2011年东城一模物理第24题解析
2011年东城一模的压轴题(第24题),有相当的难度,无论是在计算上还是在分析上。我们把这道物理题原题和具体解析发布到这里供大家学习。
推荐大家在分析完这道题之后,对比一下2009年北京高考物理第24题,地址如下:
(http://www.wang-shang.com/resource/3311.html)一起来做个对比。
24.(20分)如图所示,有一光滑轨道ABC, AB为竖直平面内半径为R的四分之一圆弧轨道,BC部分为足够长的水平轨道。一个质量为m1的小物体自A处由静止释放,m1沿圆弧轨道AB滑下,与在水平轨道BC上质量为m2的静止的物体相碰。
(1)如果m2与水平轻弹簧相连,弹簧的另一端连在固定装置P上。m1滑到水平轨道后与m2发生碰撞但不粘连,碰撞后m1与m2一起将弹簧压缩后被弹回,m1与m2重新分开。若弹簧压缩和伸长过程中无机械能损失,且m1=m2,求m1反弹后能达到的最大高度;
(2)如果去掉与m2相连的弹簧及固定装置P,m1仍从A处由静止释放。
a.若m1=
m2,且m1与m2的碰撞过程中无机械能损失,求碰撞后m1能达到的最大高度。
b.若m1与m2的碰撞过程中无机械能损失,要使m1与m2只能发生两次碰撞,求m2与 m1的比值范围。

24.(20分)
(1)m1从A滑到B重力势能转化为动能,m1的速度达到v1

①
m1与m2发生碰撞时弹簧处于自然状态,系统动量守恒,碰撞后以共同速度v共向右运动。

v共=
②
m1与m2一起将弹簧压缩后又被弹回,当弹簧恢复到自然长度时m1与m2重新分开,此时m1与m2的速度都为v共,m1以v共为初速度滑上圆弧轨道,设m1能达到的最大高度是h

解得
(5分)
(2)撤去弹簧及固定装置后。
a.
m1与m2发生碰撞时系统动量守恒,物理网整理,转载注明。且没有机械能损失。设向右为正方向,有
③
④
代入m1=
m2
可得
负号表示m1向左运动
此后m1冲上圆弧轨道,设m1能达到的最大高度是

将
带入上式,可得
(5分)
b.
m1滑到水平轨道以速度v1与静止的m2发生第一次碰撞,设向右为正方向,有


解得 

要能发生第二次碰撞的条件是v1‘<0,即m1<m2;且|v1‘|>v2‘,即| m1—m2|>2m1,可得
m2>3m1 ⑤
m1从圆弧轨道上滑下,以速度
与速度为:
的m2发生第二次碰撞,有


第二次碰后m1和 m2的速度
⑥
⑦
不发生第三次碰撞的条件为
≤
,即—
≤
≤
则
解不等式
得
⑧
解不等式
得 m2≥3m1 或
m2≤-m1 ⑨
综合⑤、⑧、⑨,m1与m2只能发生两次碰撞的条件为
(10分)
推荐阅读:












